Thursday 14 May 2015

British Computer Society (Northampton) - Voip PBX Workshop

Taken from: http://northampton.bcs.org/events.php?menu_id=4

May 16th 2015 - Voip PBX Workshop

Location: Room NW041 in The Newton Building, Avenue Campus, University Of Northampton, NN2 6JD

Presenter: John Blackburn




Arrive at 10:00am for a 10:30am start. Finish 16:00 approx



Follow up to successful VOIP presentation, take part in a workshop where we form into small workgroups to:

  • Install and configure a FreePBX (Asterisk) VOIP PBX to a Raspberry PI.
  • Install a physical VOIP phone and a lap top soft phone to connect to the PBX.
  • Form VOIP trunks to interconnect to other PI PBXs and make routed calls.
  • Configure a trunk to an external VOIP provider and make external calls.
  • If time allows, configure phone services and directories.



There will be an initial presentation followed by the workshop tasks where you can work your way step by step to a functioning private telephone network. 

There will be advice and help throughout.

If possible, bring a laptop - the workshop will form attendees into 5 workgroups each working on their own small PBX configured using a laptop. It is envisaged that there will be up to 5 attendees in each workgroup.


If you'd like to find out more about Computing at the University of Northampton go to: www.computing.northampton.ac.uk. All views and opinions are the author's and do not necessarily reflected those of any organisation they are associated with

Sunday 10 May 2015

Book Chapter: Utilising SCM – MIMO Channel Model Based on V-BLAST Channel Coding in V2V Communication (DOI: 10.1007/978-3-319-17765-6_1)







Utilising SCM – MIMO Channel Model Based on V-BLAST Channel Coding in V2V Communication




In: Communication Technologies for Vehicles 8th International Workshop, Nets4Cars/Nets4Trains/Nets4Aircraft 2015, Sousse, Tunisia, May 6-8, 2015. Proceedings

Editors: Kassab, M., Berbineau, M., Vinel, A., Jonsson, M., Garcia, F., Soler, J. (Eds.)


DOI
10.1007/978-3-319-17765-6_1

Preview of the article: http://www.springer.com/gp/book/9783319177649# 




Abstract


Vehicular ad hoc networks VANETs has recently received significant attention in intelligent transport systems (ITS) research. It provides the driver with information regarding traffic and road conditions which is needed to reduce accidents, which will save many people’s lives. In Vehicle-to-vehicle V2V communication the high-speed mobility of the nodes is the challenge, which significantly affects the reliability of communication. In this paper the utilising of SCM-MIMO channel model, (which is based on V-BLAST channel coding) is present to evaluate the performance of the PHY layer in V2V communication. The simulation results observed that the SCM model can overcome the propagation issues such as path loss, multipath fading and shadowing loss. The simulation considered three different environments, high, medium and low disruptions in urban traffic.








References

  • W. H. Organization, Global status report on road safety: time for action. WHO Library Cataloguing-in-Publication Data, Geneva (2009) 
  • Prasanth, K., Duraiswamy, K., Jayasudha, K., Chandrasekar, C. (2010) Improved Packet Forwarding Approach in Vehicular Ad Hoc Networks Using RDGR Algorithm. International Journal of Next Generation Network (IJNGN) 2: pp. 1 
  • Kumar, R., Dave, M. (2011) A Comparative Study of Various Routing Protocols in VANET. IJCSI International Journal of Computer Science 8: pp. 1 
  • Al-Khalil, A., Al-Sherbaz, A., Turner, S.: Enhancing the Physical Layer in V2V Communication Using OFDM-MIMO Techniques. In: PGNet, Liverpool (2013) 
  • Miao, L., Djouani, K., Wyk, B., Hamam, Y.: Evaluation and Enhancement of IEEE 802.11p Standard: A Survey. Mobile Computing 1(1) (2012) 
  • Han, C., Dianati, M., Tafazolli, R., Kernchen, R.: Throughput Analysis of the IEEE 802.11p Enhanced Distributed Channel Access Function in Vehicular Environment. IEEE (2012) 
  • IEEE, IEEE Draft P802.11-REVmbTM/D12, Institute of Electrical and Electronics Engineers, New York, (2011) 
  • Abdalla, G.: Physical and Link Layers of Vehicle Ad Hoc Networks: Investigating the performance of MIMO-OFDM and IEEE 802.11 in VANET, LAP LAMBERT. Academic Publishing (2011) 
  • Nguyen, D., Garcia-Luna-Aceves, J.: A Practical Approach to Rate Adaptation for Multi-Antenna Systems. In: 19th IEEE International Conference on Network Protocols, Vancouver (2011) 
  • Xue, Q., Ganz, A.: Ad hoc QoS on-demand routing (AQOR) in mobile ad hoc networks (2002) 
  • Dok, H., Fu, H., Echevarria, R., Weerasi, H.: Privacy Issues of Vehicular Ad-Hoc Networks 3 (2010) 
  • Bolcskei, H., Zurich, E.: MIMO-OFDM Wireless Systems: Basics, Perspectives, and Challenges. IEEE (2006) 
  • Wu, Y., Peng, X., Song, Y. (2011) A Symbol-wise Ordered Successive Interference Cancellation Detector for Layered Space-Time Block Codes. International Journal of Digital Content Technology and its Applications 5: pp. 4 
  • Shichuan, M., Deborah, D., Hamid, S., Yaoqing, Y.: An Extension of the 3GPP Spatial Channel Model in outdoor-to-indoor environments. In: 3rd European Conference on Antennas and Propagation, EuCAP 2009, EU (2009) 
  • Baum, D.S., Hansen, J., Galdo, G.D., Milojevic, M., Salo, J., Kyösti, P.: An Interim Channel Model for Beyond-3G Systems: Extending the 3GPP Spatial Channel Model (SCM). In: 2005 IEEE 61st Vehicular Technology Conference, VTC 2005-Spring (2005) 
  • Xirouchakis, I.: Mathworks (July 31, 2008), www.mathworks.co.uk , http://www.mathworks.co.uk/matlabcentral/fileexchange/20911-spatial-channel-model-for-mimo-simulations-a-ray-based-simulator-based-on-3gpp-tr-25-996-v-6-1-0 (accessed July 02 2013) 
  • Jaeckel, S., Börner, K., Thiele, L., Jungnickel, V. (2012) A Geometric Polarization Rotation Model for the 3-D Spatial Channel Model. IEEE Transactions on Antennas and Propagation 60: pp. 12 CrossRef
  • Zhang, L., Chen, F. (2013) A Channel Model for VANET Simulation System. International Journal of Automation and Power Engineering (IJAPE) 2: pp. 7 
  • Al-Khalil, A.B., Turner, S., Al-Sherbaz, A.: Feasibility Study of Utilising SCM – MIMO Channel Model in V2V Communication. In: 7th International Workshop on Communication Technologies for Vehicles, Saint-Petersburg (2014) 

If you'd like to find out more about Computing at the University of Northampton go to: www.computing.northampton.ac.uk. All views and opinions are the author's and do not necessarily reflected those of any organisation they are associated with

Friday 1 May 2015

Enhancing computing student employability skills through partnership working in STEM outreach.

A paper was recently presented at the 11th China-Europe International Symposium of Software Engineering Education, 29-30 April 2015, Zwickau, Germany http://whz-cms-10.zw.fh-zwickau.de/bo/index_CEISEE.html


Enhancing computing student employability skills through partnership working in STEM outreach.

Scott Turner, Associate Professor, Department of Computing and Immersive Technologies, University of Northampton, Northampton, NN2 6JB, UK


Abstract
Student volunteering is growing in the UK and elsewhere, and there is an ongoing debate about whether it is really “self-evidently a ‘good thing’” or there is a greater need for reflection to determine whether this statement is true (Holdsworth and Quinn, 2010).  This paper presents a personal reflection of Science, Technology, Engineering and Maths (STEM) volunteering as a potential route to increasing Computing student’s employability.
This paper looks at an approach at the University of Northampton that involves:
  • ·         Linking but not combining a local STEM volunteering scheme to the National STEM Volunteers (STEMNet 2015)
  • ·         Creation of a STEM Steering Group that has representation across all parts of the university.

Three brief case studies of computing student volunteers at different stages will be presented and culminate with a personal reflection based on observations over a ten year period.



References



  • Brewis, G., Russell, J., & Holdsworth, C. (2010). Bursting the bubble: Students, volunteering and the community. Research Summary.


  • Junkbots (2015) Junkbots [online] Available at: http://junkbots.blogspot.co.uk/ Accessed on: 24th January 2015.

  • Sinclair J, Allen A, Davis L, Goodchild T, Messenger J, Turner S (2014) "Enhancing student employability skills through partnership working in STEM outreach; the University of Northampton approach " HEA STEM Annual Teaching and Learning Conference 2013: Enhancing the STEM Student Journey, University of Edinburgh, 30th April-1st May 2014

  • STEMNet (2015) Science, Technology, Engineering and Mathematics Network [online] Available at: http://www.stemnet.org.uk/ Accessed on: 24th January 2015.



Scott is also on the International Programme committee (http://whz-cms-10.zw.fh-zwickau.de/bo/CEISEE_ProgComm.html)  and was a session chair for a paper session.







If you'd like to find out more about Computing at the University of Northampton go to: www.computing.northampton.ac.uk. All views and opinions are the author's and do not necessarily reflected those of any organisation they are associated with

Review of a problems-first approach to first year undergraduate programming

A paper was recently presented at the 11th China-Europe International Symposium of Software Engineering Education, 29-30 April 2015, Zwickau, Germany http://whz-cms-10.zw.fh-zwickau.de/bo/index_CEISEE.html

Review of a problems-first approach to first year undergraduate programming

Gary J. Hill
(Head of Department, Computing & Immersive Technologies, University of Northampton, Northampton, NN2 6JB, UK)

 

ABSTRACT

This paper, predominantly discusses the teaching of programming and problem solving to undergraduate first year computing students, using robots/robot simulators and visual programming to emulate the robot tasks. The needs to focus initial programming education on problem solving, prior to the teaching of programming syntax and software design methodology is also considered. The main vehicle for this approach is a robot/robot simulation programmed in Java, followed by the programming of a visual representation/simulation to develop programming skills. Problem solving is not trivial (Beaumont & Fox, 2003) and is an important skill, central to computing and engineering. The paper aims to summarise the authors earlier research on a problems-first approach to programming (Hill & Turner, 2011, 2014  to further emphasise the importance of problem solving, problem-based learning/project-based learning and the benefits of both physical and visual solutions.

The importance of linking the problem-solving robot activity and the programming assignment, whilst maintaining the visual nature of the problem, will be discussed, together with the comparison of this work with similar work reported by other authors relating to teaching programming using robots (Williams, 2003, Burbaitė et al., 2013).


The approaches discussed have been disseminated to colleagues, not only within the author’s University, but also in Europe and internationally (Kariyawasam, Turner & Hill, 2012, Hill & Turner, 2011, 2014) . Development funding support has also been received from the Higher Education Academy (HEA) – Information & Computer Sciences (ICS) Development Fund (2015a) and the HEA-ICS/Microsoft Innovative Teaching Fund (2015b).


References
Adams, J., Turner, S., Kaczmarczyk, S., Picton, P., & Demian, P. (2008). Problem solving and creativity for undergraduate engineers: Findings of an action research project involving robots. Paper presented at the International Conference on Engineering Education (ICEE 2008), Budapest, Hungary.
 
Adams J. P., & Turner, S. J., (2008) Problem Solving and Creativity for Undergraduate Engineers: process or product? International Conference on Innovation, Good Practice and Research in Engineering Education July 14-16, 2008, Loughborough, England, Higher Education Academy. 9781904804659.
 
Burbaitė, R., Damaševičius, R., Štuikys, V., (2013) Teaching of Computer Science Topics Using Meta-Programming-Based GLOs and LEGO Robots, Informatics in Education - An International Journal (Vol12_1), pp125-142.
 
Beaumont, C., & Fox, C. (2003). Learning programming: Enhancing quality through problem-based learning. In proceeding of 4th Annual Conference of the subject centre for Information and Computer Sciences of the Higher Education Academy (pp. 90-95). Newtownabbey, Northern Ireland: Higher Education Academy.
 
Bloom, B. S. (Ed.). (1956). Taxonomy of educational objectives, handbook I: Cognitive domain. White Plains, NY: Longman.
 
Chickering, A. W., Gamson. Z., F. (1987) "Seven Principles for Good Practice in Undergraduate Education." AAHE Bulletin 39:3-7. ED 282 491.6 pp. MF-01; PC-01.
 
Computing Curricula. (2001) IEEE CS, ACM Joint Task Force on Computing Curricula, IEEE Computer Society Press and ACM Press. Retrieved January 22, 2015 from http://www.acm.org/education/curricula.html.
 
Gallopoulos E, Houstis E, Rice JR (1994) Computer as Thinker/Doer: Problem-Solving Environments for Computational Science IEEE Computational Science and Engineering pp 11-23
http://dx.doi.org/10.1109/99.326669
 
Gold. N., (2010) Motivating Students in Software Engineering Group Projects: An Experience Report. Innovation in Teaching and Learning in Information and Computer Sciences 9(1), 10-19. DOI: 10.11120/ital.2010.09010010
http://dx.doi.org/10.11120/ital.2010.09010010
 
Greenfoot (2013) Teach and Learn Java Programming. Retrieved August 1, 2013, from http://www.greenfoot.org/
 
HEA-ICS Development Fund (2015a) HEA-ICS Development Fund [online] Available from: http://www.ics.heacademy.ac.uk/projects/development-fund/index.php [Accessed February 2015].
 
HEA-ICS/Microsoft Innovative Teaching Fund (2015b) "Developing problem-solving teaching materials based upon Microsoft Robotics Studio" [online] Available from: http://www.ics.heacademy.ac.uk/projects/development-fund/fund_details.php?id=88 [Accessed February 2015].
 
Hill, G. and Turner, S. J. (2014) Problems first, second and third. International Journal of Quality Assurance in Engineering and Technology Education (IJQAETE). 3(3), pp. 88-109. 2155-496X.
 
Hill G. J., Turner S. (2011) "Chapter 7: Problems First", Software Industry-Oriented Education Practices and Curriculum Development: Experiences and Lessons, M Hussey, X Xu & B Wu (Eds.), IGI Global, USA, pp 110-126, ISBN: 978-1-60960-797-5.
 
Houghton, W., (2004) How can Learning and Teaching Theory assist Engineering Academics? [online]. School of Engineering - University of Exeter. Available from: http://www.engsc.ac.uk/er/theory/problemsolving.asp [Accessed November 2007].
 
JICC5 (2001) Java & the Internet in the Computing Curriculum, Higher Education Academy (HEA) – Information and Computer Sciences (ICS) Conference, South Bank University, London, 22nd Jan, (http://www.ics.heacademy.ac.uk/events/displayevent.php?id=127).
 
Kariyawasam K., A., Turner S., Hill G. (2012) "Is it Visual? The importance of a Problem Solving Module within a Computing course", Computer Education, Volume 10, Issue 166, May 2012, pp. 5-7, ISSN: 1672-5913.
 
Microsoft. (2006). Microsoft robotics studio. Retrieved February 14, 2008, from http://msdn2.microsoft.com/en-us/robotics/aa731520.aspx
 
Savin-Baden, M. & Wilkie, K. (2004) (eds) Challenging Research in Problem-based Learning. Maidenhead: Open University Press/SRHE.
 
Turner S., Hill G. J., (2010) Innovative Use of Robots and Graphical Programming in Software Education, Computer Education, Volume 9, May 2010, pp. 54-6, ISSN: 1672-5913.
 
Turner S., Hill G. J., (2008) Robots within the teaching of Problem-Solving, ITALICS, HEA-ICS, Volume 7 Issue 1, June 2008, pp. 108-119, ISSN: 1473-7507. http://dx.doi.org/10.11120/ital.2008.07010108
 
Turner S., Hill G. J., (2007) Robots in Problem-Solving and Programming 8th Annual Conference of the Subject Centre for Information and Computer Sciences, University of Southampton, 28th - 30th August 2007, pp 82-85 ISBN 0-978-0-9552005-7-1
 
Turner S., Hill G. J., (2006) The Inclusion of Robots Within The Teaching OF Problem Solving: Preliminary Results, 7th Annual Conference of the ICS HE Academy, Trinity College, Dublin, 29th - 31st August 2006, Proceedings pg 241-242 ISBN 0-9552005-3-9
 
Wing, J. (2006). Computational thinking. Communications of the Association for Computing Machinery, 49(3), 33.
http://dx.doi.org/10.1145/1118178.1118215




Gary is also on the International Programme committee (http://whz-cms-10.zw.fh-zwickau.de/bo/CEISEE_ProgComm.html)  and was a panel member of the discussion of Software Engineering Education and Industry




If you'd like to find out more about Computing at the University of Northampton go to: www.computing.northampton.ac.uk. All views and opinions are the author's and do not necessarily reflected those of any organisation they are associated with